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Abstract

In order to understand the characteristics of thermocapillary–buoyancy flow, we conducted a series of unsteady three-dimensional
numerical simulations of thermocapillary–buoyancy flow of 0.65cSt silicone oil (Prandtl number Pr = 6.7) in an annular pool with dif-
ferent depth (d = 1–11 mm) heated from the outer wall (radius ro = 40 mm) and cooled at the inner cylinder (ri = 20 mm) with an adi-
abatic solid bottom and adiabatic free surface. Simulation conditions correspond to those in the experiments of Schwabe [D. Schwabe,
Buoyant–thermocapillary and pure thermocapillary convective instabilities in Czochralski systems, J. Crystal Growth 237–239 (2002)
1849–1853]. Simulation results with large Marangoni number predict three types three-dimensional flow patterns. In the shallow thin
pool (d = 1 mm), the hydrothermal wave characterized by curved spokes is dominant. In the deep pools (d P 5 mm) the three-dimen-
sional stationary flow appears and this flow pattern corresponds to the Rayleigh-Benard instability, which consists of pairs of coun-
ter-rotating longitudinal rolls. When 2 mm 6 d 6 4 mm, the hydrothermal wave and three-dimensional oscillatory flow coexist in the
pool and travel along the same azimuthal direction with the same angular velocity. The critical conditions for the onset of three-dimen-
sional flows were determined and compared with the experimental results. The characteristics of three-dimensional flows were discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic behavior of flows driven by a horizontal
temperature gradient in fluid layers with a free upper sur-
face has attracted the attention of the researchers for many
years. More recently, thermocapillary–buoyancy convec-
tion becomes very important in both fundamental and
industrial aspects. It is well-known that the coupled ther-
mocapillary–buoyancy convection in the crucible is very
complex and influences the homogeneity and quality of
the grown crystal directly during the Czochralski (CZ)
growth technique of the crystal. Smith and Davis [1] first
achieved the linear stability analysis in an infinitely
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extended thin fluid layer with a free upper surface subjected
to a constant horizontal temperature gradient in the
absence of gravity forces. To verify the influence of buoy-
ancy forces, Laure and Roux [2] conducted much research
for the low Prandtl number (Pr) fluids and Parmentier et al.
[3] for liquids with Pr up to 10.

At the same time, many experiments of pure thermocap-
illary or thermocapillary–buoyancy convection were carried
out for liquid pools in rectangular geometries [4–12], annu-
lar geometries [13–16] and open cylindrical containers
[17,18]. The results of these experiments would help the
understanding to various types of flow instabilities. Burgu-
ete et al. [12] found that thermocapillary–buoyancy convec-
tion could destabilize into different patterns, depending on
the temperature difference DT and liquid pool depth d.
For small d values, the system exhibits the hydrothermal
waves (HTW) while for larger d values, the stationary
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Nomenclature

Bod dynamic Bond number, Eq. (9)
d depth, m
ez z-directional unit vector
g gravitational acceleration, g = 9.806 m s�2

Gr Grashoff number, Eq. (10)
m azimuthal wave number
Ma Marangoni number, Eq. (11)
p pressure, Pa
P nondimensional pressure
Pr Prandtl number, Eq. (12)
r radius, m
R nondimensional radius
Ra Rayleigh number, Eq. (13)
t time, s
T temperature, K
v velocity, m s�1

V nondimensional velocity
V nondimensional velocity vector
z axial coordinate, m
Z nondimensional axial coordinate

Greek symbols

a thermal diffusivity, m2 s�1

b growth rate constant

cT temperature coefficient of surface tension,
N m�1 K�1

h azimuthal coordinate, rad
l dynamic viscosity, kg m�1 s�1

m kinematic viscosity, m2 s�1

q density, kg m�3

qT thermal expansion coefficient, K�1

w nondimensional stream function

Subscripts
c cold or counter
cri critical
h hotter
i inner
o outer
r,R radial
z,Z axial
h azimuthal
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longitudinal rolls (SR) are observed. Garnier et al. [15]
observed HTW with spiral-like arms in thin annular pools
of silicone oil between an inner cold rod with 8 mm of diam-
eter and an outer wall with 135 mm of diameter, and with
depth 1.2 mm or 1.9 mm. They also found a pulsating tar-
get-like wave patterns (i.e., coaxial circles traveling outward
in the radial direction) dominant only near the cold inner
wall as well as the curves arms of HTW in the whole area
of the liquid surface. Kamotani et al. [17,18] conducted a
large set of microgravity experiments of oscillatory thermo-
capillary flow in open cylindrical containers of silicone oil
with the depth 1.2, 2.0 and 3.0 cm, in which the liquid was
heated from its center. They observed two or three lobed
patterns. Recently, Schwabe et al. [19–22] reported convec-
tion experiments with silicone oil in a Czochralski model
system and annular pool at normal gravity and under
microgravity. In their experiments, the annular gaps of
0.65cSt silicone oil with an outer heated wall of radius
ro = 40 mm, an inner cooled cylinder of ri = 20 mm, and
with a liquid depth adjustable in the range of d = 2.5–
20 mm, were subjected to various radial temperature gradi-
ents. They observed thermocapillary flow penetrates fully
into the fluid volume under microgravity whereas it is a sep-
arated surface tension driven convection roll at the free sur-
face under normal gravity. They also determined the onset
conditions of the oscillations and found that gravity signif-
icantly stabilizes the basic steady radial thermocapillary
flow of silicone oil, in an annular pool heated from the outer
wall, by comparing their results of on-ground experiments
and microgravity experiment on FOTON-12 satellite. They
confirmed that the three-dimensional stationary instability
(3DSI) consisted of pairs of counter-rotating longitudinal
rolls and found it existed at the liquid depth as low as
3 mm. The wavelength of this 3DSI has been observed near
its onset for the first time and the limits for the onset of the
3DSI are estimated from a corresponding linear extrapola-
tion of the velocity amplitudes and temperature amplitudes.

Obviously, it is rather difficult to observe the details of the
various flow patterns through the experiments. The recent
development of the computers allows us to conduct large
scales three-dimensional (3D) unsteady numerical simula-
tions. Xu and Zebib [23] conducted the numerical simulation
of HTW in a rectangular pool and obtained a stability dia-
gram and wave numbers. Bucchignani [24] numerically sim-
ulated HTW in a rectangular cavity of silicone oil
(Pr = 13.9) at DT = 372 K under zero gravity. The wave-
length and propagation angle are similar to those predicted
by the linear stability analysis of Smith and Davis and also
the experiments of Riley and Neitzel [10]. Thermocapillary
flow of silicone oil was worked out by Sim et al. [25] in open
annulus with the same geometry as that of Schwabe’s exper-
iment on FOTON-12. Li et al. [26,27] showed the traveling
waves and its stability diagram in an annular pool to com-
pare with microgravity experiments of Schwabe et al. They
found that the wave patterns varied with pool depth. In very
shallow liquid layers (d = 1.0–1.5 mm), HTW with curved
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spokes is dominant. While in deeper pools, straight spokes
appear and move slowly in the azimuthal direction. Up to
now, there is a lack of numerical simulations of 3D thermo-
capillary–buoyancy flows. In the present study, we extended
our previous work [27] so as to evaluate the effect of buoy-
ancy forces on the flow instability and compare with the
experimental results of Schwabe [22] in annular pools of
moderate-Prandtl-number fluid.
2. Model formulation

2.1. Basic assumptions and governing equations

We analyze thermocapillary–buoyancy flow of the
0.65cSt silicone oil (Pr = 6.7) in an annular pool of depth
d, inner radius ri and outer radius ro, with a free upper sur-
face and a solid bottom, as shown schematically in Fig. 1.
The inner and outer cylinders are maintained at the constant
temperature Tc and Th (Th > Tc), respectively. The following
is assumed in our model: (1) Silicone oil is an incompressible
Newtonian fluid and the Boussinessq approximation is
applicable except for the surface tension. (2) The velocity is
low and the flow is laminar. (3) The upper surface is flat
and nondeformable. (4) At the free surface, the thermocap-
illary force is taken into account. At other solid-liquid
boundaries, the no-slip condition is applied. (5) Both bottom
and top boundaries are assumed to be adiabatic.

With the above assumptions, the flow and heat transfer
equations are expressed in a nondimensional form as
follows:

r � V ¼ 0; ð1Þ
oV

os
þ V � rV ¼ �rP þr2V þ GrHez; ð2Þ

oH
os
þ V � rH ¼ 1

Pr
r2H: ð3Þ

The boundary conditions at the free surface (Z = d/ro,
Ri < R < 1, 0 6 h < 2p)

oV R

oZ
¼ Ma

Pr
oH
oR

;
oV h

oZ
¼ Ma

Pr
oH
Roh

; V Z ¼ 0; ð4a–cÞ

oH
oZ
¼ 0; ð4dÞ
Fig. 1. Configuration of model system.
at the bottom (Z = 0, Ri < R < 1, 0 6 h < 2p)

V R ¼ V h ¼ V Z ¼ 0; ð5a–cÞ
oH
oZ
¼ 0; ð5dÞ

at the inner cylinder (R = Ri, 0 6 Z 6 d/ro, 0 6 h < 2p)

V R ¼ V h ¼ V Z ¼ 0; ð6a–cÞ
H ¼ Hi ¼ 0; ð6dÞ
and at the outer cylinder (R = 1, 0 6 Z 6 d/ro, 0 6 h < 2p)

V R ¼ V h ¼ V Z ¼ 0; ð7a–cÞ
H ¼ Ho ¼ 1: ð7dÞ
The initial conditions are expressed as follows (at s = 0):

V R ¼ V h ¼ V Z ¼ 0; H ¼ 1� ln R= ln Ri: ð8a–dÞ
The variables are nondimensionalized as

ðR; ZÞ ¼ ðr; zÞ
ro

; ðV R; V h; V ZÞ ¼
ðvr; vh; vzÞ

m=ro

; P ¼ pr2
o

qm2
;

H ¼ T � T c

T h � T c

; s ¼ tm
r2

o

:

The dimensionless parameters are defined as follows:

Dynamic bond number : Bod ¼
qgqTd2

cT

; ð9Þ

Grashoff number : Gr ¼ qTgDTr3
o

m2
; ð10Þ

Marangoni number : Ma ¼ cTðoT=orÞd2

la
� cTd2

la
DT

ro � ri

;

ð11Þ

Prandtl number : Pr ¼ m
a
; ð12Þ

Rayleigh number : Ra ¼ Ma � Bod ¼
gqTðoT =orÞd4

ma
; ð13Þ

where DT = Th � Tc. The geometric parameters used in
this work are chosen to simulate the experiments of Schw-
abe [22]. The depth of the annular pool is d = (1–11) mm.
The thermophysical properties of the 0.65cSt silicone oil
at 20 �C are listed in Table 1.

2.2. Numerical method

The fundamental equations were discretized by the con-
trol volume method. The central difference approximation
Table 1
Physical properties of the 0.65cSt silicone oil

Symbol Value Unit

a 0.97 � 10�7 m2 s�1

m 0.65 � 10�6 m2 s�1

q 760 kg m�3

cT �8.0 � 10�5 N m�1 K�1

qT 1.34 � 10�3 K�1

Pr 6.7 –



Table 2
Mesh dependence for d = 1 mm, Ma = 667.8 (DT = 8 K) and Bod = 0.125

Mesh Frequency (Hz) Wave number

82R � 16Z � 123h 2D stable flow –
102R � 16Z � 163h 0.6585 22
102R � 16Z � 203h 0.6686 24
102R � 16Z � 243h 0.6721 24

Fig. 2. Streamlines and isotherms of the basic flow. (a) d = 1 mm,
Ma = 167 (DT = 2 K), Bod = 0.125, wmax = 0.62, dw = 0.06, dh = 0.1; (b)
d = 6 mm, Ma = 6010 (DT = 2 K), Bod = 4.5, wmax = 4.70, dw = 0.50,
dh = 0.1.
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was applied to the diffusion terms while the second-order
upwind scheme was used for the convective terms. The dis-
cretized equations were solved by a full implicit method in
time marching. The SIMPLEC algorithm [28] was used to
handle the pressure coupling. To solve the Poisson equa-
tion, the preconditioned Bi-CGSTAB algorithm [29] was
applied.

Numerical simulations were conducted on an MPU of
Fujitsu VPP700 at the Computer Center of Kyushu Uni-
versity. The nondimensional time increment between 10�6

and 4 � 10�6 was chosen, which corresponds approxi-
mately to (2 � 8) � 10�3 s. Convergence at each time step
was assumed if the maximum nondimensional residual
error of the continuity equation among all control volumes
became less than 10�8.

In this study, nonuniform staggered grids of 102r � (16–
36)z � 243h were used. To check the grid convergence, the
simulations with four different meshes were performed
for d = 1 mm and Ma = 667.8 (DT = 8 K). These grids
produced the similar surface spoke patterns and space-time
characteristics. However, the wave number m and fre-
quency f of temperature oscillation at the monitoring point
P(R = 0.625, h = 0) on the free surface showed the small
grid dependence, as shown in Table 2. Therefore, the
meshes selected in this study were sufficient for the accurate
simulation. For other depths, sufficient grid convergence
was confirmed for each mesh. The validation of the code
for the thermocapillary and thermocapillary–buoyancy
flow simulation was performed in our previous works
[26,27,30–32], and will not be repeated here.

3. Results and discussion

Any radial temperature difference produces a surface
tension gradient on the free surface, and the Marangoni
effect and the buoyancy force induce the flow in the fluid
layer. In the present case, the surface fluid flows from the
outer cylinder toward the inner cylinder and the recircula-
tion flow exists in the fluid volume. If the temperature gra-
dient is small, a steady axisymmetric flow develops in the
fluid layer. This type of flow is called as the ‘‘basic flow”.
However, with the temperature gradient increasing, this
basic flow becomes unstable against 3D disturbances in
shallow pools (d 6 4 mm) and the three-dimensional
stationary flow (3DSF) in deep pools (d P 5 mm). In the
following sections, the critical conditions for this flow tran-
sition and the characteristics for the nonlinear 3D oscilla-
tory flow and 3DSF are precisely examined by the
numerical simulations.
3.1. Basic flow

A set of typical streamlines and isotherms of the basic
steady flow is shown in Fig. 2. Transient time to establish
these steady basic flow fields ranges between s = 0.02 and
0.08. The basic flow is characterized by its single roll cell
structure with the rapid surface flow inward from the hot
outer wall to the cold inner wall and an outward return
flow near the bottom. But, a second corotating roll cell
appears in thin fluid layers (d 6 3 mm). The strength of
the second co-rotating cell is enhanced as the temperature
difference increases. Because of the low thermal conductiv-
ity of the fluid, the thermal boundary layers appear near
the inner and outer walls. As Ma (DT) increases, the tem-
perature drop in these boundary layers raises and eventu-
ally the surface temperature gradient in the mid-surface
decreases. Therefore, the radial velocity decreases due to
the decrease in the radial temperature gradient in the
mid-region of the surface. It should be noted that there
appeared a strong roll cell near the hot wall driven by the
large surface temperature drop there. In contrast, a very
large temperature drop near the cold inner wall causes a
steep increase in surface velocity, followed by a steep decel-
eration down to zero at the cold wall. This sharp velocity
peak appears only on the surface. No such large velocity
peak appears in the bulk fluid near the cold wall.
3.2. Critical condition for flow transition

For the shallow pools (d 6 4 mm), when Ma (DT)
exceeds a certain threshold value, 3D disturbances are
incubated and the amplitudes of the azimuthal velocity
Vh at the monitoring point P (R = 0.625, h = 0) on the free
surface increase with time. Finally, a 3D oscillatory flow
pattern is formed. The present numerical simulations with



Fig. 3. Growth of the azimuthal velocity at monitoring point P. (a) d = 1 mm, Ma = 835 (DT = 10 K), Bod = 0.125; (b) d = 6 mm, Ma = 18031
(DT = 6 K), Bod = 4.5.

876 L. Peng et al. / International Journal of Heat and Mass Transfer 50 (2007) 872–880
large Ma (DT) show that during the initial growth process
the intensity of any disturbance (X) can be expressed by

X ðR; h; Z; sÞ ¼ X 0ðR; h; Z; 0Þ exp½ðbþ ibIÞs�; ð14Þ
where b is the growth rate constant of the disturbance and
bI represents the time-dependent oscillatory characteristics
of the disturbance. The typical example of growth of the
azimuthal velocity at monitoring point P is shown in
Fig. 3(a). The b-value can be determined from the slope
of the semi-logarithmic plot of Vh,max vs. s. By plotting b
vs. Ma (DT), we can determine the critical Ma (DT), which
is defined as the neutral stability limit (b = 0) [27].

For the deep pools (d P 5 mm), when Ma (DT) exceeds
a certain threshold value, 3D disturbances start an expo-
nential growth and finally a 3DSF field is established.
The mode and growth process of the 3D disturbance are
characterized by the azimuthal wave number m and the
growth rate constant b. The growth of any 3D disturbance
(X) can be expressed approximately by

X ðR; h; Z; sÞ � X 0ðR; h; Z; 0Þ sinð2pmhÞ expðbsÞ: ð15Þ
The typical example of growth of the azimuthal velocity at
the monitoring point P is shown in Fig. 3(b). We can also
determine the critical Ma (DT).

Fig. 4 shows the present results of the critical Ma (DT)
compared with the experimental results obtained by Schw-
abe [22]. The critical values obtained in the present simula-
tion show a good agreement with the experimental ones.
Fig. 4. Comparison of the simulation results and the experimental results
of the critical values.
3.3. Hydrothermal waves

Fig. 5(a) and (b) shows the characteristics of the 3D
oscillatory flow in a very thin annular pool of d = 1 mm,
including the snapshots of surface temperature fluctuation
distribution and the space-time diagram (STD) of surface
Fig. 5. Snapshots of surface temperature fluctuation and space–time
diagram of surface temperature distribution at R = 0.625. (a) d = 1 mm,
Ma = 667.8 (DT = 8 K), Bod = 0.125; (b) d = 1 mm, Ma = 1002 (DT =
12 K), Bod = 0.125; (c) Experimental results [15], left: d = 1.9 mm,
DT = 14.25 K, right: d = 1.2 mm, DT = 20 K.
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temperature distribution along a circumference at
R = 0.625. Fluctuation (dX) of a physical quantity X is
introduced to extract the 3D disturbances

dX ðR; h; Z; sÞ ¼ X ðR; h; Z; sÞ � 1

2p

Z 2p

0

X ðR; h; Z; sÞdh: ð16Þ

From Fig. 5, we found that many traveling curved spoke
patterns prevail on the entire surface area. These traveling
patterns correspond to the ‘‘hydrothermal wave” instabil-
ity. Under a small Ma (DT) number, for example,
Ma = 667.8 (DT = 8 K), the hydrothermal waves propa-
gate in the counterclockwise direction, as shown in
Fig. 5(a). The angle (/) between the wave propagation
and the negative direction of temperature gradient, mea-
sured at R = 0.625, is about 155�–160�, which is close to
those predicted by the linear stability theory for the infinite
rectangular layer for Pr = 10 [1] and an experimental result
(0.83p) obtained in a rectangular pool of silicone oil
(Pr = 10.3) [12]. These traveling waves are indicated as
the many parallel slanted straight lines on the STD. In
cases with a small Ma, the HTW patterns are clearly obser-
vable only in the inner part of the pool, being faded in the
outer region. As Ma increases, HTWs become dominant
over the whole area of the liquid surface. The azimuthal
wave number m will decrease from 24 to 21 when the tem-
perature difference rises from 7 K to 10 K. But, the oscilla-
tion frequency f will increase, as shown in Fig. 6.

Simulation with a larger Ma (DT), such as Ma = 1002
(DT = 12 K), indicates two groups of HTW coexisting in
the pool with the different wave numbers and the different
traveling directions, as shown in Fig. 5(b). Interferences
between two groups of HTW occur throughout almost
the entire volume of the pool. Typical values of the wave
number are m = 22 (counterclockwise direction) and
m = 44 (clockwise direction). The coexistence of two
groups of HTW is also reported by Garnier et al. [15], as
shown in Fig. 5(c), although his pool geometry is different
from that of the present system. However, we do not
observe ‘‘target-like (coaxial) waves” (m = 0) propagating
outward in the radial direction, which were reported by
Garnier et al. near the inner wall of his annular pool which
Fig. 6. Variation of wave number m and oscillation frequency f at
monitoring point P as functions of Ma(DT).
had much larger outer wall and smaller inner wall radiuses.
The larger inner wall radius in the present system can pro-
duce a surface temperature gradient near the inner wall
that is less than the critical value, which is necessary for
the incipience of the target-like waves.
3.4. Three-dimensional stationary flow

For the deep layers of d P 5 mm, the simulation results
are different from those of d = 1 mm. Fig. 7 shows the
snapshot of surface temperature fluctuation distribution
and the STD of surface temperature along a circumference
at R = 0.625 for the layer of d = 6 mm at Ma = 30051
(DT = 10 K). In this case, many straight spoke patterns
are observed over the entire surface area, but they do not
move. As a result, STD is indicated as the many vertical
lines. The number m of the spoke patterns is about 16
and independent on the Ma number and the pool depth
d. This flow pattern belongs to the 3DSF. The mechanism
is explained as follows.

The Marangoni effect generates an inward radial flow
(hereafter we denote this as the Ma-driven flow) near the
free surface. Therefore, the temperature at the free surface
is always higher than that at the bottom. Because the radial
temperature drops are mainly concentrated in the vertical
thermal boundary layers near the inner and outer walls,
the flow driven by the buoyancy force (the B-driven flow)
near the hotter wall carries the low temperature liquid to
the area below the free surface, as shown in Fig. 8(a). At
the same time, the return flow carries high temperature
liquid on the free surface to the area below the B-driven
flow. Therefore, there exists a region with the counter tem-
perature gradient layer near the hotter wall; its depth is dc,
as shown in Fig. 8(b). In the counter temperature gradient
layer, Rayleigh-Benard instability is produced and
extended to the free surface when the Ra number exceeds
a certain threshold value. As shown in Fig. 8(c), it suggests
that the 3DSF consists of pairs of counter-rotating longitu-
dinal rolls (whose axes are oriented parallel to the applied
horizontal temperature gradient) that are superimposed on
the basic flow, and this result has a good agreement with
the experiment of Schwabe [19]. In order to prove that
Fig. 7. Snapshots of surface temperature fluctuation and space–time
diagram of surface temperature distribution at R = 0.625 for the 3DSF.
d = 6 mm, Ma = 30051 (DT = 10 K), Bod = 4.5.



Fig. 8. The mechanism of the 3DSF. d = 6 mm, Ma = 30051
(DT = 10 K), Bod = 4.5. (a) Isotherms and pseudo-streamlines at the
plane of h = 0. (b) Temperature as a function of Z at h = 0. (c) Counter-
rotating longitudinal rolls at R = 0.925 at the plane of Z–h.

Fig. 10. Different regimes for the thermocapillary–buoyancy flow,
depending on the dynamical Bond number Bod (the fluid depth d).
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the 3DSF corresponds to the Rayleigh-Benard instability,
the local Ra number is estimated. When d = 6 mm and
Ma = 18030 (DT = 6 K), the maximum depth dc of the
counter temperature gradient layer is found to be about
2.32 mm and the maximum vertical temperature difference
dTc is estimated to be 0.28 K from the simulated results.
In this case, the local Rayleigh number defined as
Ra ¼ gqTdTd3

c=ðmaÞ, is about 728. It implies that the local
Ra number would exceed the critical Ra number value,
Racri = 657.5, which was obtained by the linear stability
analysis [33] for the incipience of the Rayleigh-Benard
instability in an infinitely extended fluid layer with the free
upper and nether surfaces subjected to a constant vertical
Fig. 9. Combined hydrothermal waves and 3D oscillatory flow at d = 2 mm, M

fluctuation. (b) Temperature as a function of Z at h = 0.
temperature gradient. Therefore, we speculate that the
3DSF is the result of the Rayleigh-Benard instability within
the counter temperature gradient layer. It should be noted
that there appeared an isothermal zone on the upper pool
near the inner wall, where the temperature oscillatory
was very small.
3.5. Combined hydrothermal waves and 3D oscillatory flow

When 2 mm 6 d 6 4 mm, combined hydrothermal waves
and 3D oscillatory flow (3DOF) appear on the free surface,
as shown in Fig. 9(a). In this case, the vertical temperature
gradient near the inner wall is large enough to form the
‘‘hydrothermal wave” instability. Therefore, the HTW pat-
terns are clearly observable in the inner part of the pool.
But, the counter temperature gradient layer near the hotter
wall also exists, as shown in Fig. 9(b). Accordingly, pairs
of counter-rotating longitudinal rolls are dominant in this
region. These rolls will propagate in the azimuthal direction
driven by HTW, which causes axes of rolls that are not
parallel to the temperature gradient. In this case, the wave
number of the 3DOF is the same as that of HTW.

Fig. 10 shows the different regimes for the buoyancy–
thermocapillary flow, depending on the dynamical Bond
number Bod (the fluid depth d). In a shallow pool, for
example d = 1 mm, the Bod (=Ra/Ma) number is about
0.125, and the thermocapillary force is dominant. The
hydrothermal wave characterized by curved spokes
appears on the free surface. While in the deep pools of
d P 5 mm, Bod P 3.12, the buoyancy force is dominant.
The 3DSF appears due to the Rayleigh-Benard instability.
When 0.5 6 Bod 6 2 (2 mm 6 d 6 4 mm), the HTW and
a = 3339 (DT = 10 K) and Bod = 0.5. (a) Snapshots of surface temperature
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the 3DOF coexist in the pool and travel in the same
azimuthal direction with the same angular velocity.

4. Conclusions

A series of 3D numerical simulations of the thermocap-
illary–buoyancy flows in annular pools of silicone oil
(Pr = 6.7) were conducted by means of the finite volume
method. From the simulation results, the following conclu-
sions were obtained.

(1) In a shallow thin pool (d = 1 mm), the hydrothermal
wave characterized by the curved spokes is dominant.
Under small Ma number, there is only one group of
HTW. The azimuthal wave number m decrease and
oscillation frequency f increases as Ma increases.
Under larger Ma number, two groups of HTW with
different wave numbers and different traveling direc-
tions coexist in the pool.

(2) When 2 6 d 6 4 mm, HTW and 3DOF coexist in the
pool and travel in the same azimuthal direction with
the same angular velocity. In this case, the wave num-
ber of the 3DOF is the same as that of HTW.

(3) In the deep pools (d P 5 mm) the 3DSF appears.
This flow pattern corresponds to the Rayleigh-
Benard instability, which consists of pairs of coun-
ter-rotating longitudinal rolls. The number m of the
spoke patterns is about 16 and independent on the
Ma number and the pool depth d.

(4) The critical conditions for the onset of the 3D flows
are determined and show a good agreement with
the corresponding experimental data [22].

(5) The numerical results in the deep pools give the qual-
itative explanation of the experimental results of the
3DSF.
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